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Abstract—Over the past several decades, function optimization
has been a growing topic in the field of computational intelligence.
This is partly down to the myriad of real world problems that
function optimization can be applied to, but also the fact there are
a number of issues facing optimization algorithms that are still yet
to be solved. Such problems include getting stuck in local optima,
and balancing exploration and exploitation. This paper introduces
a novel approach to solving the function optimization problem
that utilizes the equations of Newtonian field theory to find good
solutions. Like a number of existing optimization algorithms, this
approach models a number of particles and their positions in
solution space. However, the algorithm proposed in this paper
introduces a number of interesting behaviours that can help solve
some of the aforementioned issues. The algorithm is explained
using both formal mathematics and pseudocode, and the emergent
behaviours of the algorithm are discussed. In addition to this, the
approach is compared to other optimization algorithms using a
set of different functions. The results of these experiments, as
well as potential improvements to the proposed algorithm are
discussed.

I. INTRODUCTION

In real-world applications, resources are always limited.
The optimal use of the available resources is a crucial factor
for success, therefore, optimisation plays an important role in
many applications. In the abstract form, the aim of optimisa-
tion is maximizing or minimizing a given real function, for
example, minimise energy consumption, maximize the profit
and reliability.

Many problems can be solved easily using polynomial
time algorithms, however for some problems this is not the
case [2]. For these harder problems, it is infeasible to find
a solution in a reasonable amount of time. One example of
such a problem is finding the highest or lowest point of a
mathematical function. A simple solution would be to try every
possible combination of parameters within the given upper and
lower bounds, however as the granularity of the search and the
number of dimensions of the space being searched increases,
the number of combinations quickly becomes unworkable.
This problem may sound abstract, but it can in fact be applied
to a multitude of real world problems. Any problem involving
multiple parameters, and one or more qualities that require
optimizing falls into this category, for example the design of
satellite components [9], the management of nuclear fuel in
a power plant [13] and the optimization of machine learning
algorithms. [17].

The problem itself involves ‘hunting’ for either the peaks
(maxima) or the troughs (minima) of a function’s solution
space. Each possible point in solution space represents one
possible combination of the functions parameters. For example
the point in the solution space of the function f(x1, x2) =
x1 + x2 given the inputs 1 and 2 would have the value,
or ‘fitness’ of 3. As the number of parameters increases, so
does the number of dimensions in the solution space. High
dimensional solution spaces are harder to search [5]. One
common problem with optimization algorithms is getting stuck
in local optima, this happens when something analogous to a
peak surrounded by two troughs exists in the solution space.
When the algorithm reaches the peak, it may be unable to
escape the local maxima due to the surrounding landscape.

Many optimization algorithms are inspired by natural phe-
nomenon, Genetic Algorithms [1] are inspired by Darwinian
Evolution, each ‘generation’ of solutions has offspring, where
high performing individuals are more likely to pass on ge-
netic information, eventually resulting in individuals finding
optima. Particle Swarm Optimization [7] mimics the swarming
behaviour of a flock of birds, honing in on good solutions. If
one individual in the swarm comes across a new best solution,
the rest of the individuals will swarm towards it, searching
the local area around said solution for other good solutions.
Simulated Annealing [12] models the dissipation of energy in
a system of particles. Upon initialization, SA’s particles have
a high energy, and are very likely to jump in and out of peaks
and troughs, favouring exploration over exploitation. As the
system cools, energy is lost, and individuals converge, and
exploit optima.

Classical field theory [14] was proposed in the 17th century,
and describes systems of bodies that exert forces upon each
other. The force exerted on one particle by another is inversely
proportional to square of the distance between the two parti-
cles. Examples of systems that use the classical field theory
equations are Gravitational and electromagnetic fields. Before
Einstein’s theory of relativity [8], Newtonian gravitational field
theory was the accepted model of gravitational interaction,
used to predict the future positions of celestial bodies. In the
case of celestial bodies, more massive bodies, for instance
a star, have a much stronger gravitational pull than smaller
bodies, for instance, a planet. Inspired by this, the algorithm
proposed in this paper attempts to find global optima by
making good solutions exhibit a higher mass, and in turn
exert stronger attractive forces to other particles, resulting in



particles swarming towards good solutions.

This paper proposes a novel optimization algorithm that
is inspired by Newtonian field theory. The algorithm seeks
to effectively find optima of mathematical functions, and at
the same time is built upon the mathematics of classical field
theory.

The rest of the paper is structured as follows: Section II
gives a brief overview of a number of existing algorithms that
solve the function optimization algorithm, as well as a more in
depth overview of Newtonian field theory. Section III outlines
the proposed algorithm, and provides a formal description of
each step, including pseudocode. In addition to this, some
emergent behaviours seen in the algorithm’s particles are dis-
cussed and analysed. In section IV the algorithm is evaluated
on a number of test functions, and compared to a number of
other algorithms. The results are discussed and analysed, and
the advantages and disadvantages of the proposed algorithm
are investigated. The paper is concluded in Section V.

II. RELATED WORK

In mathematical optimization, given a function with p
parameters, the aim is to find the global optima (either minima
or maxima) of the function. Various techniques have been
proposed to locate optima. However, the no free lunch theorem
[19] showed that, for all search algorithms (including random
search), the average computational cost of finding a solution,
over all the available problems in the class, is the same. Despite
this, some algorithms perform better than others depending
on the characteristics of the input function. Some of the
simplest optimization algorithms are gradient based methods
[4]. Such methods analyse the solution space by differentiating
the input function. The derivative allows the gradient to be
calculated, and the particle can move to a more optimal
position in solution space. Gradient based methods have a
major disadvantage in that if the solution space has many
peaks and troughs they are prone to get stuck in local optima.
In addition to this, due to the fact the input function must be
differentiated, these methods do not work on discrete functions.
A number of algorithms that overcome these problems have
been developed, and a number of them are discussed in this
section.

Optimization algorithms based on the positions of particles
(solutions) in p dimensional euclidean space are no new
paradigm. In 1995 Particle Swarm Optimization (PSO) was
proposed by Kennedy et al. [7]. PSO is an optimization algo-
rithm inspired by the movements of natural swarms, such as
flocks of birds, or shoals of fish. The implementation is simple,
there are a number of particles defined upon initialization,
each particle has random coordinates in p dimensional space
and a velocity vector of length p. Each iteration, particles
move around the solution space. As well as this, each particle
accelerates towards the current global best solution, and it’s
own best historical solution. Over time, the particles should
swarm areas with many good optima, and hopefully locate
global optima. PSO does have some disadvantages, for exam-
ple simple PSO algorithms can struggle to escape local optima
[20].

Proposed in 1983, another commonly used optimization
algorithm is Simulated Annealing (SA) [12]. Like PSO, Simu-

lated Annealing models the movement of a number of particles
in an p dimensional solution space. Unlike PSO, SA has an
energy parameter, which decreases over time. Each iteration,
each SA particle considers it’s local region of solution space,
and if the energy is high, will have a high chance of moving to
a position with a lower fitness, ie. a ‘worse’ position in solution
space. The aim of this is to overcome the problem of getting
stuck in local optima. As the system ‘cools’, these random
walks become less and less probable, eventually resulting in
the particles saturating in what is hopefully a global optima.
Another commonly used algorithm, TabuSearch [10] records
a list of previously known solutions, preventing ‘loops’ from
occurring, and when faced with a known local optima, will
climb out of it. These algorithms have overcome some of
the constraints of simple hill climbing algorithms, but in the
process have become more complex.

In addition to the aforementioned particle based algo-
rithms, Genetic Algorithms (GA) are commonly used opti-
mizers [1]. Genetic algorithms model a number of individuals,
each of which encode solutions in a ‘genome’. In the case
of mathematical function optimization, the genome will be
representative of an individuals position in solution space.
Genomes can be modified via Genetic Operators. The mutation
operator randomly changes part of the genome, which as a
result will cause the position of the individual to randomly
move in solution space. This is utilized by GAs to explore a
solution space. Crossover takes two individuals, and ‘mixes’
their genomes, resulting in offspring with similar traits. This
operator is useful when exploiting optima. Each iteration of the
algorithm, a number of individuals are selected for mutation
and crossover. The higher the fitness of a given individual,
the more chance it will be selected. A key advantage of GAs
is that they can be used to optimize both continuous and
discrete search spaces, which is not the case for PSO, SA
and TabuSearch.

Newtonian Field Theory [18], or Classical Field Theory,
was proposed by Issac Newton in the 17th century. Newtonian
Field Theory is a set of equations that can be used to model
real world systems, such as the movements of celestial bodies.
In such systems, all bodies exhibit a force on all other bodies,
the amount of force exerted on a given body affects it’s accel-
eration, which in turn will affects it’s velocity and ultimately
it’s position. The potency of these forces is proportional to
the inverse square of the distance between particles (1/d2).
This is easily visible in real world examples, for instance
the Andromeda Galaxy, whilst incredibly massive, has little
effect on the movement of the Moon around the Earth, due
to the inverse square rule. In Gravitational Field Theory, the
attractiveness of a body is directly proportional to it’s mass.
The algorithm proposed in this paper utilizes this by making
the mass of a given body proportional to the fitness of the
solution it represents.

III. PROPOSED ALGORITHM

The proposed method in this paper falls under the category
of population (multi-solution) based methods as it makes use
of a number of particles/solutions in finding the optima. As
mentioned in the previous section, the proposed algorithm
utilizes the classical gravitational field theory equations, and
uses the fitness of a given particle to work out it’s mass. That



mass is used to calculate how a given particle affects all other
particles, the desired effect is to attract particles towards good
solutions by making said solutions more massive. Each particle
is a point in search space and is aware of it’s p coordinates in
the solution space, the fitness of a given particle is evaluated
by passing the coordinates into the function being optimized.

The algorithm models the behavior of N particles in p
dimensional space, the behaviour of a particle is affected
by the gravitational pull of the other particles. This is done
by manipulating the position and velocity of each particle
based on the forces applied by other particles. For each
particle i, the positions are stored in p dimensional matrix
s, and the velocities are stored in p dimensional matrix v. For
example six corresponds to the position of particle i in the xth
dimension, and vjy corresponds to the velocity of particle j in
the yth dimension.

In addition to this, each particle has a mass, which is stored
in a mass vector, m of length N (mass mi corresponds to the
mass of particle i). The mass of a particle is calculated based
on the fitness of it’s position in the p dimensional solution
space. Masses can be both positive and negative, particles
with negative masses repel other particles, whilst particles with
positive masses attract other particles. Whether or not a mass
is evaluated as positive or negative is based on a threshold,
if a particle has a fitness below the threshold, it will have a
negative mass, and repel other particles. Otherwise, the particle
will have a positive fitness, and attract other particles.

During each iteration, new velocities, positions and masses
are calculated by taking the gravitational pull of the N particles
into account. Each iteration, the following steps are run:

Firstly, the mass of each particle is evaluated using the
equation below:

mi =

{
(f(si)−mT )k if f(si) ≥ mT
(f(si)−mT )k if f(si) < mT

(1)

Where f(si) is the result of the input function given input
vector Si, mT is the mass threshold parameter, and k is a
parameter used to define how strongly particles should attract
or repel one another. To ensure that attractive forces are more
powerful than repulsive forces, particles with a positive mass
are raised to the power of k, as opposed to being multiplied by
k. These parameters are described in greater detail later in this
section, but in short, they can be used to tune the behaviour
of the algorithm. Regardless of the parameters being used, the
important thing is that the mass of a particle is proportional to
the fitness, which promotes swarming towards good solutions.

Once the masses are calculated, the new position and
velocity are calculated for each particle in the population. This
is achieved by calculating the gravitational forces exerted on
each particle. The force particle j exerts on particle i, in the
x dimension is defined as:

Fijx =
Gmimj(six − sjx)
||si − sj ||p

(2)

Where G is a gravitational constant, and mi,mj are the
masses of particles i and j. By summing all j ∈ {1...N}, the

total gravitational force exerted on particle i in the x dimension
can be calculated using the following equation:

Fix =

N∑
j=1

Gmimj(six − sjx)
||si − sj ||p

(3)

Using Fix and the equation F = ma, it is simple to
calculate the x acceleration of particle i:

aix =
Fix

mi
(4)

Using aix it is possible to calculate the updated x velocity
of i, we know that:

dv

dT
= a (5)

Where dT is the derivative of time, and dv is the derivative
of velocity, this can be re-arranged to give:

dv = adT (6)

This means that the change in rate of velocity can be found
by multiplying a by parameter dT . Plugging the x velocity of
particle i gives:

v
(n+1)
ix = v

(n)
ix − aixdT (7)

Where n is the iteration count. Note: as gravity is an
attractive force, the acceleration is negative. Finally, the x
position of body i can be updated, we know that:

ds

dT
= v (8)

and therefore:

ds = vdT (9)

ds gives the rate of change in position over time, so the
updated position of particle i is:

s
(n+1)
ix = s

(n)
ix + v

(n+1)
ix dT (10)

Once the positions are updated for all dimensions, the
masses are recalculated and the cycle repeats until the max
iteration count is reached.

This process describes one iteration of the proposed algo-
rithm. The velocity, position and mass of all particles update
each iteration, with the exception of the particle with the
highest fitness, which moves at a lower velocity, decided by
an algorithmic parameter: cvr, or centroid velocity reduction.
The velocities of the most optimal particle are divided by cvr
before the positions are updated, therefore is cvr is set to 1,
the best particle will move at normal velocity.



The resulting behavior of the algorithm is that particles
swarm around known good solutions, a behavior similar to that
of PSO. However, in addition to this, a behavior resembling
the gravitational slingshot effect [6] is apparent. Particles
cluster together around optima, resulting a large number of
massive particles in close proximity to each other, and huge
forces being exerted on the particles. The result is particles
occasionally being slung far away from the particle cluster,
which can result in new solutions being discovered.

Another emergent behavior appears in solution spaces with
an incline in a given direction. For instance the simple two
dimensional function: f(x1, x2) = x1 + x2 has a solution
space in which the fitness increases as both x1 and x2 tend to
infinity. If this function was given to the proposed algorithm,
the particles would ‘tumble’ towards higher values of x1 and
x2, and build up momentum in the direction of the incline.
Effectively, the proposed algorithm has the potential to learn
if a given solution space has an incline, and can take advantage
of it to find better solutions.

When the algorithm was developed, a piece of software to
visualize it was also developed. This software allows ‘traces’
to be captured, and these traces can be used to analyse the
emergent behaviours. In this visualization software, both the
two dimensional function, and the paths of the particles are
visualized. In the background of the traces, the red pixels
represent areas of the solution space with a high fitness,
whilst blue pixels represent areas with a negative fitness. In
the foreground, the dark green trails represent the previous
positions of the particles, and the light green circles represent
the particles’ current positions.

Fig. 1. This figure shows an example of the swarming behavior. Particles
can be seen swarming around the optima of f(x1, x2) = (x1 − 5)2 +(x2 +
2)2 + 20.

In figure 1 the swarming behaviours can be observed.
Particles appear to orbit around a common point of attraction,
which in this case is the global maxima of the inverted
sphere function. This behaviour allows the algorithm to exploit
optima, this can be seen by observing the coverage of the
particle’s trails. The trails have a wide coverage of the area

around the optima, and the coverage increases as the distance
to the optima decreases.

Fig. 2. Here, a trace of the algorithm running on the function f(x1, x2) =
x1 + x2 shows the emergent ‘slingshotting’ behavior.

The ‘slingshotting’ behavior is a direct result of the swarm-
ing behavior. When many particles of high mass come within
close proximity of each other, some are fired off at high
velocity. This can be seen in figure 2. The space between
the points in the trail is proportional to the velocity of the
particle. In the figure a dense cluster of particles can be seen
in the bottom right, and a number of other particles can be
seen being launched from the cluster. These particles are able
to jump out of local optima, and potentially find new optima,
much like the random walks of Simulated Annealing [12]. It
is worth noting that in this implementation, particles that hit
the edge of the solution space ‘bounce’ off with a reduced
velocity in the relevant dimension. This velocity reduction is
controlled by a coefficient of restitution parameter.

Figure 3 shows an example of the tumbling behavior. From
the trail it is apparent that the particles grouped together in
a cluster, which then preceded to move towards the general
direction of the incline. In this example, the solution space
has numerous local maxima, in which many less intelligent
optimization algorithms would become stuck. In addition to the
tumbling and swarming behaviours visible in figure 3, some
of the particles are also exhibiting the slingshotting behaviour,
some making it most of the way across the bound solution
space.

The proposed algorithm has four parameters that can be
used to fine tune performance: G, which controls the strength
of gravity, mT , which defines at what point the force becomes
attractive or repulsive, k, which controls how much the fitness
of a particle affects the mass and finally cvr which controls
how much slower the current best particle moves. By tweak-
ing these parameters, the overall behavior of the algorithm
changes, for instance a high G or k value causes a lot of
singshotting, leading to an exploratory search, whilst a low
value of G or k causes slow moving swarms to manifest,
allowing for a more exploitative search. It is important to keep



Fig. 3. This figure shows the third emergent behaviour introduced in this
section, ‘tumbling’. The particles form a moving cluster, that tumbles towards
the global optima of in this case the graph f(x1, x2) = sin(2(x1 + 0.2)) +
sin(2(x2 + 0.2)) + 0.1x1 + 0.1x2.

cvr balanced, too low and the particles will glance over optima
without exploiting them, too high and proper exploitation
becomes difficult as the particle in the ideal place to exploit
the current best solution is restrained too much.

During each of the experiments in the following section,
the values of G and k were set as 1, the value of mT was
-1000, and the value of cvr was 10. -1000 was chosen as
the value of mT to ensure that optima were above the mass
threshold.

A number of other configurations were tested, however
the best results were generated using this configuration. No
problem specific optimization took place. The results of this
parameter optimization can be seen in table I. These results
are the mean of 5 runs at 100 iterations with 50 particles. 3
functions were used as benchmarks, they are all defined in
section IV of this paper.

TABLE I. RESULTS OF ITERATIVE GRID SEARCH

G k cvr mT Sphere Matyas Griewank
1 1 1 -1000 -0.030 -0.089 -0.043
1 2 1 -1000 -1.653 -0.116 -0.762
1 1 5 -1000 -0.011 -0.017 -0.012
1 2 5 -1000 -0.346 -0.222 -0.539
1 1 10 -1000 -0.004 -0.008 -0.005
1 2 10 -1000 -0.064 -0.209 -0.037

In addition to the formal description of the algorithm pseu-
docode is also provided, which can be seen in Algorithm 1. It
is worth noting that despite the fact the mathematics describe
an n dimensional optimization algorithm, the implementation
used in this paper was only capable of optimization in 2
dimensions.

IV. INVESTIGATION

The algorithm proposed in this paper will be compared
against a number of other algorithms using a range of func-

Algorithm 1 Gravitational Field Optimization Algorithm
Inputs: Input Function, Number Of Particles,
Outputs: Position Of Optima

Set Parameters G, k and mT
Randomly Initialize Positions of Particles
for i = 1 to noIterations do

for j = 1 to noParticles do
calculate mass of particle j
for k = 1 to noDimensions do

calculate the total force exerted on particle j in
dimension k
calculate acceleration of particle j in dimension k
calculate updated velocity of j in dimension i

end for
update position of particle j
update mass of particle j

end for
end for
return position of particle with highest mass

tions. The performance metrics used reflect the algorithms
ability to converge on global optima and the speed at which the
algorithm converges. Two metrics are used: the best maxima
found after 100 and the best maxima found after 500 iterations.
Exploratory algorithms should be able to find good candidates
for optima early on, and should excel at 100 iterations, whilst
more exploitative algorithms should perform better at 500
iterations, assuming they did not get stuck in local optima.
In addition to these comparison experiments, the effect of
allowing the proposed algorithm to run for different number
of iterations is also investigated, as well as the effects of
increasing and decreasing the number of particles.

In this paper, the algorithms are tested using 10 different
test functions. The functions used in this paper are defined
in the section below, some functions are inverted such that
a global maxima search will take place as opposed to a
global minima search. As the implementation of the proposed
algorithm is only capable of optimizing two dimensional
functions, all of the test functions have only two dimensions.
All functions are two dimensional. The functions were taken
from the following works: [16][15][3][11]

Sphere Function:

f(x1, x2) = −(
2∑

i=1

x2i ) (11)

Rosenbrock Function:

f(x1, x2) = −100(x21 − x2)2 − (1− x1)2 (12)

Beale Function:

f(x1, x2) =− ((1.5− x1 + x1x2)
2

+ (2.25− x1 − x1x22)2

+ (2.625− x1 + x1x
3
2)

2)

(13)



Rastrigin Function:

f(x1, x2) = 20−
2∑

i=1

(x2i − 10cos(2πxi)) (14)

Schwefel Function:

f(x1, x2) = −(
2∑

i=1

−xisin(
√
|xi|)+2(418.982887)) (15)

Matyas Function:

f(x1, x2) = −0.26(x21 + x22) + 0.48x1x2 (16)

Griewank Function:

f(x1, x2) = −1−
2∑

i=1

x2i
4000

+

2∏
i=1

cos(
xi√
(i)

) (17)

In addition to these benchmark functions, a number of
functions first defined in this paper are used. These functions
have features that compliment the proposed algorithms unique
characteristics which were discussed in the previous section.
The functions feature large numbers of local optima in close
proximity to each other, and solution spaces that are slightly
sloped in one direction. These functions are defined below:

Spherewave Function:

f(x1, x2) = 10

2∑
i=1

x2i +

2∑
i=1

+0.1xi (18)

PyramidalFunction:

Pyr(x1, x2) =10| sin(x1) + sin(x2)|

+10| sin(x2)− sin(x1)|+
2∑

i=1

+0.1xi
(19)

Nested Pyramidal Function:

f(x1, x2) = Pyr(Pyr(x1, x2), Pyr(x1, x2)) (20)

In the following set of experiments, the proposed algorithm
is compared to Particle Swarm Optimization [7], and a Genetic
Algorithm [1]. The GA uses a binary string as a chromosome,
which evaluates as 2 floating point coordinates. All three
algorithms are tested with 20, 50 and 100 particles, and as
stated earlier in this section, the best maxima at 100 and
500 iterations are recorded. In each experiment, all algorithms
are run 100 times, and the best result is shown. For each
function, the two dimensional solution space is bound as
follows: −10 ≤ x1 ≤ 10 and −10 ≤ x2 ≤ 10. All particles
are initialized with random position vectors, with values within
the bound solution space. On each run, a new random seed is
used.

In addition to the three optimization algorithms, a tradi-
tional iterative ’grid’ search is also run on each the functions.
A ’grid search’ consists of a number of points being chosen
and evaluated against the input function iteratively, the point

TABLE II. RESULTS OF ITERATIVE GRID SEARCH

Function: 50x50 100x100 500x500
Sphere -0.083 -0.020 -0.008
Rosenbrock -0.044 -0.088 -0.016
Beale -0.203 -0.224 -0.058
Rastagrin 37.753 36.085 39.841
Scwefel -830.083 -830.078 -830.075
Matyas 0.002 0.000 0.000
Griewank -0.021 -0.005 0.000

Spherewave 1.371 1.440 1.566
Pyramidal 10.399 11.262 11.606
Nested Pyramidal 11.054 11.048 11.881

yielding the best result is the optima returned by the search.
Intuitively, grid searches with a higher number of rows and
columns, and therefore a higher granularity, return the best
results. Grid searches of 50x50 (2500 fitness evaluations),
100x100 (10000 fitness evaluations) and 500x500 (250000
fitness evaluations) are performed on each functions, and the
results are shown in the table II.

Table II’s results allow the optima of the functions to be
gauged, and also provides benchmarks for the optimization
algorithms to complete against. As expected, in most cases,
the results improve as the granularity increases. In the set of
experiments conducted later in this paper, the number of fitness
comparisons will be vastly lower (2000 - 50000), compared to
the 10000 - 250000 of grid search.

The results in table III show the proposed algorithm is
competitive with both PSO and GA. In many cases, especially
when 100 particles are used, all 3 algorithms find the global
optima. On simple functions, such as Sphere and Matyas, all
functions consistently find the global optima. The proposed
algorithm seems to struggle when only 20 particles are used,
however when this number is increased the algorithm performs
better, this will be investigated more thoroughly later in this
section. On almost all of the functions, the proposed algorithm
outperformed the iterative search. On the three functions
introduced in this paper, the proposed algorithm outperforms
or is on par with all other algorithms. This shows there exists
scenarios in which the proposed algorithm has advantages over
the other algorithms tested in this paper.

The results in table IV show a similar trend to the results in
table III, in that with the exception of the functions introduced
in this paper, the proposed algorithm either performs equally
well, or slightly worse than the other algorithms tested. This
holds true with the exception of ‘Rosenbrock’ where like
in the previous experiment, the proposed algorithm performs
considerably worse than the others. The proposed algorithm
performs well on the functions introduced in this paper. On all
3 functions, each of the algorithms appears to find the global
maxima when 100 particles are used.

Next, the particle and iteration counts are modified, and
the behavior of the algorithm is investigated. First, changing
the iteration count is investigated. Using the Beale function
and particle counts of 20, 50, 80 and 100, iteration counts
between 10 and 1000 are investigated. This experiment is run
50 times and the averages are taken, and the results can be
seen in graph 4.

This graph firstly shows that as the number of iterations
increases, so does the average performance of the proposed



TABLE III. SHOWS THE PERFORMANCE OF THE PERFORMANCE OF THE PROPOSED ALGORITHM IN COMPARISON WITH GA AND PSO FOR POPULATION
SIZE OF 20, 50 AND 100. THE RESULTS ARE BEST OUT OF 50 RUNS AND AFTER 100 GENERATIONS

Function FO20 PSO20 GA20 FO50 PSO50 GA50 FO100 PSO100 GA100

Sphere -0.059 0.000 -0.069 0.000 0.000 0.000 0.000 0.000 0.000
Rosenbrock -0.810 -0.020 -2.561 -0.662 -0.001 -0.422 -0.268 0.000 -0.140
Beale -0.261 -0.122 -0.219 -0.316 -0.089 -0.228 -0.306 -0.056 -0.338
Rastagrin 37.419 39.592 38.161 40.000 40.000 40.000 40.000 40.000 40.000
Scwefel -830.078 -830.075 -830.075 -830.079 -830.075 -830.076 -830.075 -830.075 -830.075
Matyas -0.004 -0.000 0.008 0.000 0.000 0.000 0.000 -0.000 0.000
Griewank -0.025 -0.002 -0.013 0.000 0.000 0.000 0.000 -0.000 0.000
Spherewave 1.878 1.256 1.837 1.881 1.257 1.877 1.885 1.571 1.881
Pyramidal 11.785 1.471 11.577 11.785 11.782 11.782 11.786 11.786 11.786
Nested Pyramidal 11.789 11.253 11.252 11.881 11.875 11.322 11.881 11.880 11.847

TABLE IV. SHOWS THE PERFORMANCE OF THE PERFORMANCE OF THE PROPOSED ALGORITHM IN COMPARISON WITH GA AND PSO FOR POPULATION
SIZE OF 20, 50 AND 100. THE RESULTS ARE BEST OUT OF 50 RUNS AND AFTER 500 GENERATIONS

Function FO20 PSO20 GA20 FO50 PSO50 GA50 FO100 PSO100 GA100

Sphere -0.001 -0.000 -0.058 0.000 0.000 0.000 -0.000 -0.000 0.000
Rosenbrock -0.258 -0.000 -0.000 -0.162 -0.000 0.000 -0.132 -0.000 0.000
Beale -0.074 -0.056 -0.057 -0.168 -0.056 -0.217 -0.090 -0.056 -0.057
Rastagrin 39.775 40.000 39.000 40.000 40.000 40.000 40.000 40.000 40.000
Scwefel -830.075 -830.075 -830.075 -830.075 -830.075 -830.075 -830.075 -830.075 -830.075
Matyas -0.005 -0.000 -0.002 0.000 0.000 0.000 0.000 -0.000 0.000
Griewank -0.008 -0.000 -0.010 0.000 0.000 0.000 0.000 -0.000 0.000
Spherewave 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885 1.885
Pyramidal 11.785 11.785 11.786 11.786 11.786 11.786 11.786 11.786 11.786
Nested Pyramidal 11.831 11.797 11.793 11.875 11.716 11.833 11.881 11.881 11.881
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Fig. 4. Show the relation between the number of iterations and the fitness.
The y-axis shows the mean fitness of the best particle over 50 runs.

algorithm, however it does so with diminishing returns. In
addition to this, these results also imply that adding ex-
tra particles improves both the exploratory and exploitative
characteristics of the algorithm. Put simply, as the number
of particles in increases, the time it takes to converge to a
good solution decreases. This is investigated further in the
next experiment, where changing the number of particles in
investigated. Iteration counts of 20, 50, 80 and 100 are tested,
and particle counts between 2 and 100 are investigated, the
results can be see in figure 5.

The results in figure 5 show what has already been demon-
strated in the previous experiment, that performance increases
as the number of particles increases. In addition to this, a
certain amount of inconsistency is apparent. The inconsistency
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Fig. 5. Show the relation between the number of particles and the fitness.
The y-axis shows the average fitness of the best particle over 50 runs.

becomes less of an issue as particle counts increase, this can
be seen in figure 5 in the form of the lines smoothing out.
Interestingly at one point the run at 20 iterations outperforms
the run at 100 iterations. The fact this didn’t happen in the
previous experiment implies changing the particle count has
more of an effect on the outcome than changing the iteration
count.

In this section, the proposed algorithm was compared to
two other commonly used optimization algorithms, Particle
Swarm Optimization, and Optimization using a Genetic Algo-
rithm, as well as this, an iterative search was also compared.

The algorithm performed best on the three functions de-
fined for the first time in this paper. This is not surprising,
as the functions were developed with the proposed algorithms



previously discussed emergent behaviors in mind, and as such
have characteristics that complement the proposed algorithms
strong points. On the other functions, the proposed algorithm
performed similarly to PSO and GA, with the results at 100
iterations being poorer than the results at 500 iterations.

Despite this, on some of the functions, the proposed
algorithm performed poorly compared to the other algorithms,
even when the particle count is increased and the algorithm
is allowed to run for 500 iterations. For instance on the
Rosenbrock and Beale functions the proposed algorithm is
repeatedly considerably worse than PSO and GA. One feature
of these two functions, the Beale function more so, is a large
plateau in the functions’ solution space, surrounding a single
global optima. This sort of problem would be for simple for
even an iterative gradient based optimization algorithm, yet
somehow presents a problem for the proposed algorithm. On
the contrary, comparing the results of a more ‘hilly’ function
such as the Griewank function shows a different trend; here
the proposed algorithm can reliably find the global optima.

When compared to the iterative ‘grid search’, on all func-
tions other than Rosenbrock and Beale, on which the proposed
algorithm performed poorly, the algorithm outperforms the grid
search. This is comparing the maximum grid search granularity
against the proposed algorithm’s results using 100 particles at
500 iterations. This is unsurprising, as the iterative search is
unable to focus on promising areas in the solution space. It
is worth noting at this point 250000 fitness evaluations were
completed for the grid search, yet only 50000 had elapsed for
the proposed algorithm.

Overall, the algorithm proposed in this paper is competitive
when compared to Particle Swarm Optimization, and Opti-
mization using a Genetic Algorithm. In addition, this work has
demonstrated that a set of problems exist in which the proposed
algorithm outperforms the two aforementioned algorithms.

V. CONCLUSION

This paper proposed an algorithm that tackles the function
optimization problem using a novel approach. The algorithm is
described with formal mathematics, and emergent behaviours
are summarized and discussed. The proposed algorithm is
compared against a number of other commonly used heuristic
optimizers, and a set of functions on which the proposed
algorithm outperforms the competition has been identified. The
effect of tweaking some of the algorithms parameters was also
investigated.

Future work could involve subtly modifying the algorithm
to improve performance. Taking inspiration from Simulated
Annealing [12], one possible improvement to the algorithm
could be to have the particles ‘cool down’ as the iteration
count increases, allowing for an exploratory search early on,
and an exploitative search after promising areas have been
found. This could be done by reducing the Gravitational
Constant (G). In addition to this, the implementation of the
algorithm needs to be extended to optimize n dimensional
problems. Implementing this will allow the algorithm to be
tested against more complex functions, and an investigation
into how the algorithm performs on problems with a large
dimensionality can be conducted. This would also open up
numerous ‘real-world’ optimization problems for investigation,

in contrast to the abstract functions explored in this work. It
would also be interesting to explore the benefits of problem
specific parameter optimization on the proposed Algorithm.

Continuing to develop novel optimization techniques is
important due to the amount of problems that are infeasible
using deterministic time algorithms. Even if an algorithm is
only capable of pushing the boundaries on a small number of
those problems, it could help resolve important issues in the
field.
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